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A numerical method, based on the principle of modified asymptote superposition, is described which 
can represent electrode polarization data by a single equation. 

Nomenclature 

a, b, e 
d 

D '  
I 
q 

V 

empirical constants 
parameter in Equation 3 
transpose of parameter vector D 
electric current flow between electrodes 
modifying parameter 
voltage drop between anode and cathode 

1. Introduction 

The variation of the current flow between an 
anode and a cathode in an electrochemical cell 
with the magnitude of the imposed electric field 
(or with one of the electrode potentials) is deter- 
mined by more than one physical phenomenon. In 
consequence, even in the simplest case of a single- 
ion electrode reaction, individual sections of the 
I -  V curve are interpreted in terms of the non- 
Faradaic and residual currents, a charge transport- 
controlled portion and a mass transport-controlled 
portion, within appropriate potential regions 
where one of the physical phenomena, represented 
by appropriate mathematical relationships, is pre- 
dominant. In transition intervals between regions 
of predominance no single theoretical relationship 
applies. Yet, for the purpose of process design, 
analysis, simulation and optimization, a single- 
equation model would have obvious advantages, 
especially for pocket- and desk-size computing 
devices. The purpose of this paper is to present a 
fast and efficient method of constructing such a 
model from experimental polarization data. The 
method is one specific application of the recently 
developed [1,2] technique of modified asymptote 

superposition (MAS). This technique is particu- 
larly well suited, although by no means confined, 
to instances where conventional deterministic 
model construction is cumbersome and compu- 
tation is time-consuming. 

2. Theory 

The MAS technique is introduced by a relatively 
simple case where, in a certain range of the 
independent variable vector X, a physical system is 
governed by mutually independent phenomena 
YA = fA(X) and lib = fB(X). Then, the asymptotic  
system behaviour can be described as 

Y = Yl = max [fA(X);fB(X)] (la) 
o r  

Y = Y2 = min [fh(X);fB(JO].  ( lb)  

Real system behaviour, of course, falls between 
Ya and YB, except in a certain subset of X where 
asymptotic behaviour is closely approached. 
Assume for the sake of argument, that 

fA(X)  = a + b X  (2a) 

fB(X) = e (2b) 

where X is a single independent variable. Then, as 
shown in Fig. 1, fA and fB represent the two 
asymptotes, but not any transition between them. 
The transition range may be represented (among 
other, but less convenient choices) by exponential 
functions of the type 1/(1 + e z) and 1/(1 + e-Z). 
Thus, the single equation 

a + b X  c 
Y - 1 + e a<x-x~ + 1 + e -a (x -x~  (3) 
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fB 

Fig. t. Illustration of tim asymptote superposition prin- 
ciple in the case of two distinct linear phenomena. 

where Xo is the appropriately chosen transition 
point, describes the entire behaviour within the 
range of interest of the independent variable. Not 
only is an exponential function representative of 
many physical (especially first-order) processes, 
but it also has a useful linear property for small 
deviations from Xo: 

1 1 z 
t + ~ +- z ~ --2 T- 4 for small z. (4) 

This linear approximation ensures at least 0.001 
accuracy for Izl < 0.3. The generalized form of 
Equation 3 may be written immediately as 

fA(X) fB(X) 
Y = 1 + e D'(x-xo) + (5) 1 + e -D ' (x -X~  

The 'sharpness' of transition depends on the 
numerical value of the D vector elements (or of 
the scalar d); for small values the predicted value 
o f y  at X = Xo is the arithmetic average of the 
individual contributions. This property does not 
correspond to all known cases of physical super- 
position;in fact, if both independent phenomena 
are similar in magnitude about Xo, their inter- 
section may result either in a dampening or in an 
augmenting effect on each other and the actual 
value o f y  may be appreciably different from the 
averaged values. In order to include this class, a 
modified form of asymptote superposition has to 
be used. Equations la and lb are replaced by 

Y = Y1 = modified max [fA(X);fB(X)] (6a) 

Y = Y2 = modified rain [fA(X);fB(X)] (6b) 

and Equation 5 is modified to 

fA(X) fn(X) 
Y = 1 + e z y ( x - x ~ ) m  ~ 1 + e - ~  (7) 

using the scalar-valued parameter q as modifier. 
The approach can be extended to more than two 
asymptotes without any conceptual difficulty and, 
indeed, electrode polarization corresponds to a 
three-asymptote case. Some of  the important 
corollaries of the MAS principle are described in 
the following. 

Let z ~ D ' ( X - -  Xo) and let X be in a close 
neighbourhood of the transition point X0. Since 
within this neighbourhood fA and fB are nearly 
(but not truly) equat, one may write that/A ------fB = 
YA and Equation 7 may be written as 

R z =  y__y_ 1 1 
YA -- 1 + e z§ -t . (8) 1 + e -z+q 

Rz  is the fractional value of the actual system 
behaviour with respect to asymptotic behaviour at 
the transition point; if there were no deviation, Rz  

would be unity. Then, a deviation parameter a = 
IR -- 11 may be defined and Equation 8 rearranged 
to the form 

1 
cosh(z) = --sinh Iql -- cosh Iql (9) a 

regardless of the sign of q. One can plot a family 
of z versus Iql curves with parameter a, as shown 
in Fig. 2. As z approaches zero, Iql -~ 2a and the 
variation o fz  with [q[ becomes very steep; on the 
other hand, when [ql becomes large, cosh(z) 
approaches the function (a -1 -- 1)e 1~1/2. Most 
importantly, the region of sharp variation is lz[ ~< 
3 and this fact will be important in establishing the 
single-equation polarization model. Finally, at 
X = Xo, flA = fB and Equation 8 reduces to the 
simple relationship 

Ro = 2/(1 + eq). (10 

3. A single-equation polarization model via the 
MAS principle 

As shown in Fig. 3, where specific polarization 
data obtained in a previous study [1 ] have been 
plotted, the experimental 1- V relationship may be 
approximated by three linear asymptotes in the 
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Fig. 2. The variation of Izl with Iql at selected values of 
a (Equation 9). 

case of a single-ion cathode reaction followed by 
hydrogen generation: 

I = a l ( V - - b l )  I < I L  

I = e I = [ L  

I = a2 (V- -b2 )  I > I L .  

Comparison with experimental data defines a 
lower deviation range (V1, W2) and an upper 
deviation range (V2, W2) at a predetermined error 
condition. The asymptote interception points are 
V~ = bl + c/a1 and V~ = b2 + c/a2; the 
corresponding experimental current values are 
I~ and I~. Let R1 = I f / c  and R2 = I~/c. Then, 
from Equation 10, ql = ln[(2 - - R I ) / R l l  and 
q2 = In[(2 - -R2)/R2].  The next step is to estab- 
lish the (AT- Xo) neighbourhood: 

( X - - X o ) ~  = max [W 1 - -  V~; V f -  Vi i  (12a) 

( X - - X o ) 2  = max [14:2-- V~; V~- -  V2]. (12b) 

Then, 
zl  = ( X - - X o ) x d l  + ql (13a) 

z2 = ( X - - X o ) f l 2  + q2. (13b) 

From Fig. 2, I z l  ~< 3, hence one can obtain the 
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Fig. 3. Comparison of experimental polarization data with 
model prediction (Equation A4). 

lowest and the highest possible values of dl and d2: 

3 + q t  3 - - q l  
( a ~ ) . , ~  = - ( a ~ ) ~ , .  - 

( X  - : : o h  ( X  - X o h  

(14a) 

(11) 3 +q2  3 - - q 2  
(d2)min - -- (d2)max - -  (X-  Xoh (I"- Xo)2" 

(14b) 

Rounding these values up to the nearest integer for 
the sake of convenience, their absolute values Na 
and N2 are taken and the single-equation model 
may be written as 

a l ( V - -  ba) 
I =  

1 + e Ngv-v*)+~ 

c 

+ 1 + e -N'(V-V*)+q' + e N2(V-v*)+q2 (15) 

a2(V--  b2) 
+ 

1 + e -N~(v-V*)+q2 " 

Fig. 3 clearly indicates that the model can fit 
experimental data in the entire polarization range 
at high accuracy if the above steps are executed 
carefully. Details of the numerical illustration are 
described in the Appendix. It follows directly 
from the above that the method of modified 
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asymptot ic  superposition is appreciably faster and 
requires a good deal less computat ional  effort than 

using conventional orthogonal polynomials when 

system behaviour is determined by  competing and 
locally predominant  phenomena.  Polarization is a 
particularly good illustration of  this statement,  
manifest by  Equation 15 (and Equation A4 in the 
specific example quoted in the Appendix)  which 
can readily be programmed into small computing 
devices. However, the usefulness of  this approach 
is by  no means confined to this instance and 
numerous applications in various areas of  science 

and engineering can be envisaged. 
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Appendix.  Numerical illustration 

The first two columns in Table 1 contain experi- 
mentally observed current versus cell voltage drop 
data pertaining to an electrolytic cell [2] in which 
a 0 .54mol  dm -3 CuSO4 + 0.98 tool dm -3 H2SO4 

solution was electrolysed at 24 ~ C between two 
cylindrical copper electrodes of  12.5 cm 2 area 

each, placed vertically 1.5 cm apart. The 
graphically constructed asymptotes are as follows: 

I = 0 . 8 1 3 ( V - 0 . 1 2 4 4 )  I < I L  (A1) 

I = 0.632 1=1L (A2) 

1 = 1.071 ( V - -  0.8347) I > I L .  (A3) 

The experimental  points are joined with a smooth 
curve (Fig. 3); one finds that Vf = 0.1244 + 
0.632/0.813 = 0.9108 and V~ = 0.8347 + 0.632/ 
1.071 = 1.4248. Hence, from the smooth curve, 
I f  = 0.59 and I~ = 0.65; hence R1 = 0.59/0.632 = 
0.933 and R2 = 0.65/0.632 = 1.0285. Using Equa- 
tion 10, q l  = In [(2 - -  0.933)/0.933] = 0.134 and 
q2 = In [ ( 2 -  1.0285)/1.0285] = -  0.057 are com- 
puted. Comparing Equations A1-A3  with the 
experimental  data, major deviations between 
asymptotes and experimental  points appear in the 
V1 = 0.76, W1 = 1.08 and 172 = 1.36, W2 = 1.48 V 
range. Hence, (X --  X0), = max (1.08 --  0.9018; 
0.9018 - -  0.76) = 0.1782 and (X- -Xo)2  = 
max (1.48 - -  1.4248; 1.4248 - -  1.36) = 0.0648. 

Table 1. Comparison of experimental and model- 
computed current flow in the experimental cell 

Potential drop Current (A) 
between electrodes 
(V) Experimental Compu ted by 

Equation A4 

0.20 0.078 0.061 
0.24 0.098 0.094 
0.28 0.120 0.127 
0.32 0.147 0.159 
0.40 0.220 0.224 
0.44 0.251 0.257 
0.48 0.290 0.289 
0.52 0.327 0.321 
0.56 0.363 0.354 
0.60 0.376 0.387 
0.64 0.429 0.420 
0.68 0.459 0.452 
0.72 0.490 0.485 
0.76 0.516 0.515 
0.80 0.541 0.542 
0.84 0.561 0.565 
0.88 0.580 0.581 
0.92 0.596 0.596 
0.96 0.610 0.612 
1.00 0.616 0.623 
1.04 0.624 0.623 
1.08 0.629 0.631 
1.12 0.632 0.632 
1.16 0.632 0.632 
1.20 0.632 0.632 
1.24 0.633 0.632 
1.28 0.633 0.632 
1.32 0.633 0.632 
1.36 0.637 0.632 
1.40 0.643 0.638 
1.44 0.655 0.658 
1.48 0.696 0.692 
1.52 0.735 0.734 
1.56 0.776 0.777 
1.60 0.816 0.820 
1.64 0.857 0.862 
1.68 0.900 0.905 
1.72 0.943 0.948 
1.76 0.988 0.991 
1.80 1.033 1.034 
1.84 1.080 1.077 
1.88 1.122 1.120 
1.92 1.165 1.162 
1.96 1.208 1.205 
2.00 1.249 1.248 

Then, using Equations 13 and z = -+ 3, - -  17.586 < 
d l <  16.083 a n d - - 4 5 . 4 1 6  < d 2  < 4 7 . 1 7 5 .  Since 
the numerical accuracy of  the exponential  terms is 
only mildly affected by  doing so, the convenient 
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round numbers Idll = 20 and Id21 = 50 are chosen. 
The single-equation model can now be written as 

I =  
0 . 8 1 3 ( V -  0.1244) 

1 -t- ~20(V-0.9018)+0.134 

+ 0.632 
1 + e -20(V-0"9018)+ 0.134 _{_ C50(V- 1,4248)-0.0 57 

1.071 ( V - -  0.8347) 
1 q- C 5~ b4~8)-o.o57 �9 (A4) 

Comparison of  the variation of  current with 
voltage drop predicted by Equation A4 in Table 1 
with the experimental results indicates very close 
agreement. 
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